
Ignyte Software
Microsoft .NET Platform

Coding Standards and Code Walkthrough Guidelines
For Microsoft .NET Platform

Developer Role

Version 1.7

June 28, 2009

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 2 of 26

Revision History
Date Version Request # Description Author

02/03/2008 1.0 Initial Draft Rob Wells

5/23/2008 1.1 Updated Content Rip Dallas

7/1/2008 1.2 Updated Content Burt Summar

8/28/2008 1.3 Minor updates Mark Overstreet

10/30/2008 1.4 Minor Updates Mark Overstreet

5/18/2009 1.5 Added database specific information regarding

password encryption

Mark Overstreet

6/9/2009 1.6 Added clarifications for several items including

business object expectations, database

expectations and requirements for AJAX and

CSLA.NET versions

Mark Overstreet

6/28/2009 1.7 Added more clarification. Mark Overstreet

Sign-Off
Sign-off Level Date Name Signature

Level 1

Level 2

Level 3

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 3 of 26

Table of Contents

GENERAL GUIDELINES ... 4

APPLICATION ARCHITECTURE ... 4

REUSABILITY .. 6

APPLICATION SECURITY ... 6

CLASS / METHOD FUNCTIONALITY ... 7

BUSINESS RULE VALIDATION ... 7

DATA VALIDATION ... 7

PRESENTATION ... 8

OTHER GUIDELINES .. 8

NAMING CONVENTIONS ... 9

PASCAL CASE NOTATION .. 9

CAMEL CASE NOTATION ... 10

NAMING GUIDELINES .. 10

NAMING GUIDELINES FOR SQL .. 12

NAMESPACES .. 14

ASSEMBLY NAMING .. 14

CODE FORMATTING .. 14

INDENTATION .. 14

CODE STRUCTURE ... 15

LINE LENGTH .. 15

CODE REGIONS ... 15

CODE COMMENTING ... 16

INLINE COMMENTS ... 16

CLASS HEADER DESCRIPTION ... 17

FUNCTION HEADER DESCRIPTION ... 18

USER MESSAGE GUIDELINES ... 19

VARIABLES ... 19

DECLARATION .. 19

CLEANUP .. 20

C# ERROR HANDLING ... 20

SQL SERVER SPECIFIC (SQL SERVER 2005 AND ABOVE) ... 22

STANDARD AUDITING SQL ... 23

STANDARD ERROR HANDLING TEMPLATE .. 23

CODE WALKTHROUGH GUIDELINES ... 24

PROCEDURE .. 24

SOURCE CODE DOCUMENTATION ... 25

SOURCE CODE CHECKLIST .. 25

CHANGE LOG ... 26

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 4 of 26

Principles of Construction

There are four principal concerns in construction. They are, in order of precedence;
security, quality, reuse and compliance with standards. This document will ensure that
developers will produce a quality product consistently.

General Guidelines

Application Architecture

• All projects (unless other otherwise approved) must implement a design phase
prior to any coding being done. This design phase must include a prototype of
the user interface (in Visual Studio), a UML diagram of the business layer and all
business objects, and an ER diagram of the database. Each phase must be
completed and signed off on by Ignyte before any other phase is started as this
will eliminate a lot of re-work. Also, the screen prototyping phase must
implement each and every screen the system will have and include enough hard
coded data to demonstrate the screens functionality as well as enough code to
move between screens. The screens must look identical to how they will look
once deployed to a production server.

• The project must conform to a logical 3-tier design at a minimum and include a
project for the user interface, the business layer, and the data layer. If the project
includes webservice functionality, there should be a separate layer for that
project as well. In the case of projects that do not contain a user interface, a test
client (or test clients) should be added that allows us to test the all functionality.
Also, if the solution contains references to third party DLLs these should be
contained in a folder under the solution folder called ‘OtherDLLs’. The projects
and folders should be named as follows: Ignyte.ProjectName.UI(WebUI),
Ignyte.ProjectName.BusinessLayer, Ignyte.ProjectName.DataLayer,
Ignyte.ProjectName.Webservice, Ignyte.ProjectName.TestClient1.

• Each project should have downstream referencing only and the application
absolutely should not contain any circular references. In most cases the User
Interface will reference the Business Layer which will then reference the Data
Layer. The Data Layer should never reference the Business Layer and the
Business Layer should never reference the User Interface.

• The data layer must be built with Ignyte’s Data Layer Generator unless some
other alternative is approved. This generator will provide a basis for your data
layer but WILL NOT produce all the code you will need. You will still be
responsible for supporting transactions, rollbacks, commits etc as well as writing
custom queries. All custom code should be placed in the inherited Table class,
NOT in the base class as this is where the generator will always overwrite its
code should you need to execute the Data Layer Generator multiple times.

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 5 of 26

• All projects must be done in Visual Studio 2008 Professional with Service Pack 1
while targeting the .NET 3.5 Framework using C# unless an alternative is
approved ahead of time.

• All applications requiring a database should use SQL Server 2008 Standard
Edition (unless an alternative is approved ahead of time)

• The business tier must utilize the CSLA.NET framework and it must implement
all business logic appropriately using the constructs of this framework. Also,
Business objects should NEVER expose concepts of the actual physical data
layer. For example, if we are storing data in a relational database, you should
never expose foreign keys as part of the public interface as this is a relational
concept and should the backend change, it would affect any program consuming
the business object. We should be able to swap out any persistence mechanism
(e.g. XML file, SQL Server database, IMS database, etc) without affecting our
user interface or any other consumer of our Business objects.

The current version of the CSLA.NET framework is 3.6.2 and can be
downloaded here (http://www.lhotka.net/files/csla36/cslacs-3.6.2-
090322.zip)

• The application must utilize the latest version Infragistic’s NetAdvantage UI
components (NetAdvantage 2009 Vol. 1) when it will clearly provide value to the
application. For example, if you need enhanced functionality the basic GridView
component does not provide, use the Infragistic WebGrid.

• For reporting, you must use the latest version of Active Reports from Data
Dynamics (ActiveReports for .Net Standard Edition 3.0). This is our reporting
standard and no other components are acceptable unless an extreme
circumstance dictates it in which case we must approve it.

• The application must NOT use the Microsoft Enterprise Blocks unless explicitly
authorized.

• The application must NOT use any third party DLLs other than the ones specified
by this document unless explicitly authorized.

• Each application must be self-contained and cannot rely on any outside
databases or components or services unless explicitly approved ahead of time.
For example, the ASP.NET Membership database tables cannot be used unless
approved. Instead this information must be maintained in the application being
built.

• Each application must provide custom logging and tracing functionality in order to
assist in troubleshooting. Logging errors should include, at a minimum, writing a
text file called ‘Application Name Error Log’ to a ‘Logs’ sub-directory of the
application and the ability to email each error to one or more email addresses.

• All webservices must be built with WCF (.svc). Older ASMX services cannot be
used. Webservices should contain NO business logic. Any and all logic should
be contained in a middle-tier business object and called by the service.

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 6 of 26

• Web applications must support and be fully compatible with all current versions
of the major browsers which include but are not limited to Internet Explorer,
Safari, Chrome, Firefox and Opera.

• All web applications must fully support IIS Compression.

• All web applications must provide support for Viewstate Compression at the
application level. This must be controlled via a web.config setting called
‘EnableViewStateCompression’

• All web applications must provide support for Website Compression at the
application. This must be controlled via a web.config setting called
‘EnableWebsiteCompression’.

• All web applications should utilize AJAX completely and should use the AJAX
libraries included in Visual Studio 2008 SP1. The AJAX Control Toolkit should
be utilized when appropriate and you must use version 3.0.30512
(http://ajaxcontroltoolkit.codeplex.com/Release/ProjectReleases.aspx?ReleaseId
=27326#DownloadId=68191) or a later version.

• All ASP.NET coding must be done in code-behind files and should not be directly
in-line with the aspx page unless approval is given ahead of time.

Reusability

• Minimize code duplication.

• Be aware of and reuse existing controls and components wherever possible.

• Look for opportunity to create new reusable controls and components.

• Reusable code should be self-contained and should not have any external
dependencies.

• Inherited object should be easy to extend.

Application Security

• Data fields should always be declared as private so that they are not directly
accessible outside the class.

• Declare get/set accessors to allow access to the data fields.

• Passwords should always be encrypted or utilize a one-way hash

• Use proper industry standard programming techniques to minimize security risk
including programming against SQL injection, buffer overflows, etc.

• Always use stored procedures. Dynamic SQL should not be used unless
authorized on a case-by-case basis and if it is used, must protect against SQL
injection.

• All applications must store passwords in the database using encryption. Also,
the application must be able to read the password field and determine if the
password is encrypted or un-encrypted and function properly. If the password
read from the database table is un-encrypted, the password must then be

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 7 of 26

encrypted and stored back to the database. This will allow an administrator the
ability to reset any password by merely typing a new password directly into the
table in the database.

• All applications must allow users to retrieve their actual password (not reset the
password) via email unless another method is approved ahead of time.

Class / Method Functionality

• Each class should be responsible for carrying out only a small set of related
tasks, making it easy to inherit from and easy to test.

• Each method should be responsible for carrying out only a single task.

• Use Overloading functions for backward compatibility wherever feasible.

• Avoid using Optional Parameters in VB.Net.

• Avoid writing very long methods. A method should typically have 1 to 25 lines of
code. If a method has more than 25 lines of code, you must consider re-factoring
into separate methods.

• Method name should tell what it does. Do not use misleading names. Do not use
abbreviations.

Business Rule Validation

All business rules must be implemented in their appropriate business object utilizing the
CSLA.NET BrokenRules collection technique. In addition, some of these rules will need
to be enforced again in the user interface. For example, a text box might limit the length
of the last name field in the user interface in addition to checking this length in the
business object because you want instant user feedback. However, the business rule
must not be solely implemented in the user interface for several reasons. First, the
business object might be directly used without ever utilizing the user interface. Second,
in a web application the web-browser could have JavaScript disabled and any
implemented business logic would be ineffective. In both cases, if the business rules
were not implemented in the business object itself, the data could be invalid.

Data Validation

Data validation should be used to make sure data conforms to table schema before
attempting to update the table. As mentioned above, you should be enforcing data
validation business logic in the user interface as well as the business tier.

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 8 of 26

Presentation

• An application should have a consistent look and feel throughout.

• These guidelines may be decided on a case-by-case basis always keeping the
customer’s needs in mind.

• Design consideration should include: MDI/SDI interface, Label size and font,
Label and control orientation, etc

• All buttons/fields should be symmetrical, aligned consistently, and consistent in
size.

• When writing ASP.NET applications, we do not want to use pop-up windows.
Instead, utilize the modal popup AJAX control (AJAX Control Toolkit) that utilizes
a DIV tag instead or use your own DIV-based window.

• All aspx and html pages must be fully XHTML 1.1 compatible.

• ASP.NET pages should never implement Frames.

Other Guidelines

• Trim all leading and trailing spaces from each string field before persisting to the
database, unless there is a valid reason not to.

• Do not hardcode numbers. Use constants instead.

• Do not hardcode strings. Use resource files or constants.

• Avoid using many member variables. Declare local variables and pass it to
methods instead of sharing a member variable between methods. If you share a
member variable between methods, it will be difficult to track which method
changed the value and when.

• Use enumerations wherever required. Do not use numbers or strings to indicate
discrete values.

• Do not make the member variables public or protected. Keep them private and
expose public/protected Properties.

• Never hardcode a path or drive name in code. Get the application path
programmatically and use relative path.

• In the application start up, do some kind of "self check" and ensure all required
files and dependencies are available in the expected locations. Check for
database connection in start up, if required. Give a friendly message to the user
in case of any problems.

• If the required configuration file is not found, application should be able to create
one with default values.

• If a wrong value found in the configuration file, application should throw an error
or give a message and also should tell the user what are the correct values.

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 9 of 26

• Error messages should help the user to solve the problem. Never give error
messages like "Error in Application", "There is an error" etc. Instead give specific
messages like "Failed to update database. Please make sure the login id and
password are correct."

• Release Candidate source code must always build without generating any errors
or warnings.

• Communication is very important to us. Our office is officially open Monday –
Friday 8:00AM – 4:00PM Eastern Standard Time and we expect all inquiries and
questions from us to be answered within 1 business day unless you notify us
ahead of time that this will be a problem (e.g. Holidays, etc). Must provide
project updates every one or two days during the development process to make
sure the requirements are understood.

• When coding is completed the project is not over. We will begin user acceptance
testing and the project will not be considered completed until all bugs are
reported and fixed. Please realize that this may take more than one iteration
based on how many things get broken in each testing/fix phase. Also, you can
expect that we will take between 5 and 21 business days to organize test cases
and produce a feedback document for each release candidate you provide.
Therefore, we highly recommend that you TEST and RE-TEST the
application before submitting it to us for User Acceptance Testing.
Otherwise, do not be surprised if the application takes longer to complete.
Also, if we find immediate errors that you should have found during
testing, it will affect your rating because we cannot waste time and money
organizing test teams only to find errors that happen immediately when we
execute the first test case so make sure you TEST every scenario
completely!!!!!

Naming Conventions

A consistent naming pattern is one of the most important elements of predictability and
discoverability in a managed class library. Widespread use and understanding of these
naming guidelines should eliminate unclear code and make it easier for developers to
understand shared code.

We will use mostly the following two approaches for our development purposes.

Pascal Case Notation

The first letter in the identifier and the first letter of each subsequent concatenated word
are capitalized.

Examples: BackColor, DataSet

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 10 of 26

Camel Case Notation

The first word is all lower case. For all other words in the name, the first letter is
capitalized.

Examples: lastName, firstName

Naming Guidelines

Type Case Notation Example

Private Class Level Variable
Camel case prefixed with “_”.

_firstName, _lastName

Protected Variable

Camel case firstName, lastName

Public Variable

Pascal case FirstName, LastName

Local Variable

Camel case

socialSecurityNumber,

numberOfItems

Namespace

Pascal case or uppercase for

very small word or abbreviations.

System.Windows.Forms,

System.Web.UI

Class

Pascal case

Customer, Order, InvoiceDetail

Interface

Pascal case prefixed with the

letter “I”.

Examples: IServiceProvider,

IFormatable

Parameter

Camel case employeeName, numberOfItems

Method/Function

Pascal case

RemoveAll (),

GetFormattedPhone()

Property/Enumerations

Pascal case BackColor, NumberOfItems

Event
Pascal case notation suffixed

with “EventHandler”.
MouseEventHandler

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 11 of 26

Constant
Uppercase with words separated

by underscores

AP_WIN_MAX_WIDTH,

AP_WIN_MIN_WIDTH

Exception

“ex”

Catch (Exception ex)

Custom Exception ClassnameException PageNotFoundException

Project

Projectname.Solution

 Projectname.BusinessLayer

 Projectname.Website

 Projectname.DataLayer

Ignyte.SecretGift.Solution

Ignyte.SecretGift.BusinessLayer

 Ignyte.SecretGift.Website

 Ignyte.SecretGift.DataLayer

Physical Files (.cs, .vb, etc) ClassName.cs User.cs, Person.cs, Invoices.vb

Common DLLs
Strong name and place it in a

common location or GAC

User Interface Control: Pascal case prefixed with the appropriate abbreviation as
listed below.

Control Prefix Control Prefix

Button btn NumericUpDown nud

CheckBox chk Panel pnl

ComboBox cbx PictureBox pbx

Container ctr ProgressBar prg

ContextMenu ctm RadioButton rdb

DataColumn dcol RichTextBox rtf

DataGrid dgrid SDI_Form frm

DataGridDateTimePickerColumn dgdtpc Splitter spl

DataGridTableStyle dgts SqlCommand sqlcom

DataGridTextBoxColumn dgtbc SqlConnection sqlcon

DataReader dr SqlDataAdapter sqlda

DataRow drow StatusBar stb

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 12 of 26

DataSet dset TabControl tabctrl

DataTable dtable TabPage tabpg

DateTimePicker dtp TextBox tbx

Dialog dlg ToolBar tbr

DialogResults dlgr ToolBarButton tbb

ErrorProvider erp ToolTip ttp

GroupBox gbx TrackBar tkb

ImageList iml TreeView tvw

Label lbl Timer tmr

LinkLabel lkl UserControl uc

ListBox lbx XmlDocument xd

ListView lvw

Mainmenu mnu

MenuItem mnui

MDI-Frame frame

MDI-Sheet sheet

In addition to providing naming standards,

• Method names should be a Verb or Verb Phrase

• Class/Property/Variable names should be Noun or noun phrase. In business
objects, boolean properties should have a Verb as the first part of the name such
as IsActive, IsAvailable, CanTransfer etc.

• Parameter names should have a descriptive name

• Attributes should always suffix with "Attribute"

• Exceptions should always suffix with "Exception"

• EventHandler should specify two parameters sender and e. Sender should
always be object type, e should have the event class state

Naming Guidelines for SQL

Item Case Notation Example

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 13 of 26

Database Files
Pascal case. ProjectName.mdf

ProjectName_log.ldf

ASPXFileManager.mdf

ASPXFileManager_log.ldf

Tables

Pascal case notation prefixed

with a “T” and should be

singular.

TAddress

User Generated Stored

Procedures

Pascal case prefixed with “usp_”
usp_GetAgencyKey

Application Generated Stored

Procedures

Pascal case prefixed with “sp_”
sp_GetAgencyKey

Report Stored Procedures Pascal case prefixed with "rsp_" rsp_Report1

Views

Pascal case notation prefixed

with a “V”.

VPerson

Functions

Pascal case prefixed with “fn_”.

fn_GetUserNameByKey

Triggers Pascal case prefixed with "tr_" tr_UpdateCounty

Input Parameters

Pascal case prefixed with “@i_”. @i_Key

Output Parameters

Pascal case prefixed with “@o_”.

@o_Key

Variables

Pascal case prefixed with “@”. @Key

Jobs

Pascal case prefixed with

“(system abbreviation)_”.
ECH_SendEmailNotifications

DTS Packages

Pascal case prefixed with

“(system abbreviation)_”.
CPMS_Conversion

Primary Keys Pascal case Key

Foreign Keys Pascal case TableNameKey

Unique Constraints
Pascal case

(UniqueTableNameFieldName)

UniqueTUserEmail

UniqueTCountryName

UniqueTUserToRoleUserKeyRoleKey

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 14 of 26

Namespaces

A namespace is a way to categorize your classes and types so as to avoid naming
conflicts between your code and other developer’s code. The recommended structure
of a namespace is as follows:

CompanyName.ProjectName[.Feature][.Design].

Example: Ignyte.BracketManager

Feature and design are optional but useful in cases where you need to explicitly
organize and separate functionality from the main project, particularly if the main project
comprises multiple structures.

Examples: Ignyte.BracketManager.Accounting

 Ignyte.BracketManager.Accounting.GeneralLedger

Assembly Naming
An assembly must be named exactly as the namespace of the project. If there are
multiple namespaces in a project (which is strongly discouraged), then the primary
namespace should be used.

Examples: Namespace � Ignyte.BracketManager.BusinessLayer

 Assembly � Ignyte.BracketManager.BusinessLayer.dll

Code Formatting

Indentation
• Comments should be in the same level as the code.

• Use TAB for indentation. Do not use SPACES.

• Use one blank line to separate logical groups of code.

• There should be one and only one single blank line between each method inside
the class.

• Use a single space before and after each operator and brackets.

• When an expression will not fit on a single line break it up according to these
guidelines.

 1) Break after comma.
 2) Break after operator.
 3) Align the new line with the beginning of the expression in the previous line.

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 15 of 26

Example:

MethodCall(expr1, expr2,
 expr3, expr4, expr5);

Code Structure
• The source directory and sub-directories would directly correlate to the
namespaces. However, the starting point is irrelevant but unless otherwise
stated should be
drive_letter\projects\projectname\source\cs\company.projectname.solution\

Examples:

Namespace � Ignyte.BracketManager.BusinessLayer

Directory � drive_letter\projects\BracketManager\source\cs\Ignyte.

BracketManager.Solution\Ignyte.BracketManager.BusinessLayer

Line Length

• Use common sense with line lengths.

• There are cases when it makes sense that a line should go past the visible IDE
and force the use of scrollbars.

• However, these should be kept to a minimum and lines should be broken
according to the guidelines above.

Code Regions
Use the following code region names in the following order whenever possible.
Region names should have a space prior to the first character and a space after the last
character to increase readability. Also, when all regions are collapsed you should have
one blank line between each region.

• Class Level Variables
Declare your private variables here. Remember to prefix your private class scope
variables with an underscore ("_").

• Constants
Declare any constants and follow the naming standards (e.g.
DEFAULT_FILE_NAME)

• Constructors / Destructors
Declare your constructors here along with destructors. Remember to only utilize
destructors in special scenarios as they can cause performance issues.

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 16 of 26

• Properties
Place your public property getters/setters here.

• Methods (Public)
Place your public methods in this region.

• Methods (Private)
Place your private methods in this region.

• Events
Declare the event arguments classes and the events in this region.

• Embedded Classes
Declare any internal classes you are going to use. However, this typical should
not be done and in general, all classes should be placed in their own code file
(class.cs)

Examples:
#region Class Level Variables
#endregion

#region Constants
#endregion

#region Constructors / Destructors
 #endregion

#region Properties
#endregion

 #region Methods (Public)
 #endregion

#region Methods (Private)
 #endregion

#region Events
 #endregion

#region Embedded Classes
#endregion

Code Commenting

Inline Comments

• Use inline comments to explain assumptions, known issues, and algorithm

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 17 of 26

insights.

• Do not use inline comments to explain obvious code. Well written code is self
documenting.

• Comment each type, each non-public type member, and each region declaration.

• Use end-line comments only on variable declaration lines. End-line comments
are comments that follow code on a single line.

• Do not create formatted blocks of asterisks that surround comments.

• Separate comments from comment delimiters (apostrophe) with one space.

• Begin the comment text with an uppercase letter.

• End the comment with a period.

• Include task-list keyword flags to enable comment filtering.

• Always apply C# comment blocks (///) to public, protected, and internal
declarations.

• Use VB Comment Blocks(''') to all class, method, property, event declarations

• Make sure all methods, properties and classes include our standard header and
that all parameters are defined completely and accurately based on their
purpose. NOTE: Parameters definitions such as (<param
name="nodeToUpdate" type=”TreeNode”> Node to update</param>) must
include the ‘type=’ attribute and which will not be included automatically by Visual
Studio.

• All comments must be documented in English without spelling or grammatical
errors.

Class Header Description

The following comment blocks should appear at the top of each class module
developed (before the class or interface keyword). Using this header will convey
pertinent information to other developers.

 /// <summary>
 /// Base class used when needing a screen that is divided into 4 sections and
 /// includes a top, a bottom, a left and a right panel. The left and right panels are
 /// divided by a splitter bar control.
 /// </summary>
 ///
 /// <remarks>
 ///
 /// <CodeWalkthroughHistory>
 /// Reviewed By Date Reviewed Checklist Status
 /// Rob Wells 10/10/2004 Passed
 /// </CodeWalkthroughHistory>
 ///

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 18 of 26

 /// <RevisionHistory>
 /// Author Date Description
 /// Jeff Howard 10/1/2004 Created Class
 /// Lisa Goins 10/5/2004 Added NodeSelected function
 /// </RevisionHistory>
 ///
 /// </remarks>

 In the above example, replace /// with ‘’’(ticks) if you are coding in VB.Net

Function Header Description

The following comment block should appear at the beginning of each method definition.
Using this header will convey pertinent information to other developers.

 /// <summary>
 /// Function to update the text
 /// displayed on the active node
 /// </summary>
 ///
 /// <param name="nodeToUpdate" type=”TreeNode”> Node to update</param>
 ///
 /// <returns>true if node was updated</returns>
 ///
 /// <exception cref="System.Exception">Thrown when…</exception>
 ///

/// <remarks>
 /// <CodeWalkthroughHistory>
 /// Reviewed By Date Reviewed Checklist Status
 /// Rob Wells 10/10/2004 Passed
 /// </CodeWalkthroughHistory>
 ///
 /// <RevisionHistory>
 /// Author Date Description
 /// Jeff Howard 10/1/2004 Created Class
 /// Lisa Goins 10/5/2004 Added NodeSelected function
 /// </RevisionHistory>
 /// </remarks>

 In the above example, replace /// with ‘’’(ticks) if you are coding in VB.Net

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 19 of 26

User Message Guidelines

The purpose of this section is to setup guidelines for displaying effective and consistent
message to the users throughout the system. Displaying information using message
box requires setting title, message, icon, buttons, and default button setting.

• MessageBox title should be descriptive of the action being performed, for example
“Confirm Delete”, “File not found”. Never use “Information”, “Critical” and “Warning”

• MessageBox text should give the user a clear, non-technical explanation of the
problem.

• MessageBox text should include steps or a clear explanation of how to prevent the
problem from occurring again.

• MessageBox text should state the problem or goal first, then the solution.

Message Type Icons Buttons Default Button

Information Information OK OK

Question Information Yes & No No

System Error Error OK OK

Other Warning OK OK

Variables

Declaration

• Declaring variable with proper scope. For example, do not declare variable
globally if they are going to be used in one function.

• Declare variables at the top of the function, class, or sub.

• Use the simplest data type, list, or object required. For example, use Int over
Long unless a 64 bit value will be stored.

• Declare member variables as private. Use properties to provide access to
them with

• Public, Protected, Internal, or Friend access modifiers.

• Avoid specifying a type for an Enum - use default of int unless you have an
explicit need for long.

• Avoid using inline numeric literals (magic numbers). Instead, use a Constant

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 20 of 26

or Enum.

• Avoid declaring inline string literals. Instead use Constants.

• Only declare constants for simple types such as int and string.

• Always explicitly initialize arrays of classes, interfaces, delegates, objects,
and strings using a for loop.
Example:
int count =1;
Object refCount = count; // implicitly boxed.
int newCount = (int)refCount; // explicitly boxed.

• Floating point values should include at least one digit before the decimal
place and one after. Example: totalPercent = 0.05;

• In C#, use the “@” prefix for string literals instead of escaped strings.
 Example:
 //Bad
 ConfigFile = "\\VIP.exe.config";

 //Good
 ConfigFile = @"\VIP.exe.config";

• Prefer string.Format() or stringBuilder over string concatenation.

• If doing string concatenation inside of a loop, always use stringBuilder.

• Do not compare strings to string.empty or “” to check for empty strings.
Instead, compare by using string.length == 0.

• Avoid hidden string allocations within a loop. Use string.Compare() instead.
Example:
 // Bad
 If (Name.ToLower() == “John”)

 //Good
 If(String.Compare(Name,”John”,true) == 0)

• Avoid boxing and unboxing of value-types. Use Generics if necessary.

Cleanup

• Destroy objects before exiting a function.

• Use Dispose method to destroy objects.

• Use the finally block to release resources.

• Avoid using GC.Collect

C# Error Handling

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 21 of 26

• Never declare an empty Catch block.

• Avoid nesting a try/catch within a catch block.

• Unhandled exceptions must be written to a log.

• Display the error message only once to the user. In case of exceptions, give a
friendly message to the user, but log the actual error with all possible details
about the error, including the time it occurred, method and class name etc.

• Catch the most specific exception possible. Order exception filters from most to
least derived exception type.

• Use Constants for all application related error messages instead of hard coding.

• If re-throwing an exception, omit the exception argument from the throw
statement so the original call stack is preserved.

Example:

// Bad
Catch (Exception ex)
{
 throw(ex);
}

// Good
Catch (Exception ex)
{
 throw;
}

• Only use the finally block to release resources from a try statement.

• Always use validation to avoid exceptions. Avoid using Try..catch instead of
If..Else logic

Example:

// Bad
try
{
 Conn.Close()
}
Catch(Exception ex)
{
 //Do what ever
}

// Good

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 22 of 26

if (Conn.State != ConnectionState.Closed)
{
 Conn.Close();
}

• In most cases, use the predefined exception types. Only define new exception
types for programmatic scenarios, where you expect users of your class library to
catch exceptions of this new type and perform a programmatic action based on
the exception type itself. This is in lieu of parsing the exception string, which
would negatively impact performance and maintenance.

For example, it makes sense to define a FileNotFoundException because the
developer might decide to create the missing file. However, a FileIOException is
not something that would typically be handled specifically in code.

• Do not expose privileged information in exception messages. Information such as
paths on the local file system is considered privileged information. Malicious code
could use this information to gather private user information from the computer.

• When throwing a new Exception always pass the Inner Exception in order to
maintain the exception tree & inner call stack.

• Write your own custom exception classes, if required in your application. Do not
derive your custom exceptions from the base class “SystemException”. Instead,
inherit from “ApplicationException”.

• Do not write very large try-catch blocks. If required, write separate try-catch for
each task you perform and enclose only the specific piece of code inside the try-
catch. This will help you find which piece of code generated the exception and
you can give specific error message to the user.

SQL Server Specific (SQL Server 2005 and Above)
Each field in every table of the database should be defined as not nullable unless there
is specific reason to not use a default value. This is especially true for string fields
because there is no need to have to check for both null and empty string values when
coding. Obviously a table containing a field such as ‘DateTerminated’ would be a
candidate for using a null value but something like a ‘OptionalDescription’ should be
using a default empty string value instead of a null value.

Also, each table in the database should implement the template definition below to
handle auditing information and non-business meaning primary keys (unless specifically
indicated otherwise). In addition, remember that foreign keys should always be named
consistently using this format: TableNameKey.

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 23 of 26

Standard Auditing SQL
CREATE TABLE [dbo].[TTableName](
 [Key] [uniqueidentifier] ROWGUIDCOL NOT NULL DEFAULT
(newsequentialid()),
 [TStamp] [datetime] NOT NULL DEFAULT (getdate()),
 [DateCreated] [datetime] NOT NULL DEFAULT (getdate()),
 [CreatedBy] [varchar](50) NOT NULL DEFAULT (suser_sname()),
 [LastUpdatedBy] [varchar](50) NULL,
 [Source] [varchar](50) NOT NULL DEFAULT (app_name()),
 CONSTRAINT [TTableName_PK] PRIMARY KEY CLUSTERED
(
 [Key] ASC
)

CREATE TRIGGER [dbo].[TTableName_RecordUserNameAndTimeStampOnUpdate]
ON [dbo].[TTableName]
 AFTER UPDATE
 AS
 BEGIN
 UPDATE [TTableName]
 SET LastUpdatedBy = SUSER_SNAME ()
 WHERE [TTableName].[key] in (select [key] from inserted)

 UPDATE [TTableName]
 SET TStamp= getdate()
 WHERE [TTableName].[key] in (select [key] from inserted)
 END

Standard Error Handling Template

-- Stored procedure that will select an existing row from the table 'TApplication'
-- based on the Primary Key along with all its related Users from 'TUsers'.
-- Gets: @Key uniqueidentifier
-- Returns: @ErrorCode int

ALTER PROCEDURE [dbo].[usp_TTableName_SelectOneByPrimaryKey]
 @Key uniqueidentifier
AS

BEGIN
 BEGIN TRY

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 24 of 26

 -- SELECT an existing row from the table.
 SELECT
 [Key],
 [Name],
 [ExecutionLink],
 [TStamp],
 [DateCreated],
 [InsertedBy],
 [LastUpdatedBy],
 [Source]
 FROM [dbo].[TApplication]
 WHERE
 [Key] = @Key
 END TRY
 BEGIN CATCH
 DECLARE @T INT
 SELECT @T = 9
 -- An error has occurred so format it and
 -- return it to the caller.
 --EXEC usp_ReturnFormattedError (define this for more control)
 RAISERROR('THIS IS SHOULD BE REPORTED BACK', 16, 34) WITH
SETERROR
 END CATCH;

END

Code Walkthrough Guidelines

Procedure

• A code walkthrough will be performed after the completion of each unit of work.

• The code walkthrough is a short process and should take no more than an hour
or two for unit of work.

• The technical lead may review the code themselves or delegate this task to
another team member.

• The code should be reviewed using the checklist

• Any related database items should be reviewed by the DBA/Technical Lead.

• Add name of reviewer, date reviewed, and current checklist status (passed,
failed) to the top of the source code of the class/form/module.

• If the code failed for any reason, the reviewer should include enough information
in the comments section of the checklist for the developer to make corrections.
For example, line number, function name, etc…

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 25 of 26

• In the event of a dispute, the technical lead will make the final decision based on
coding standard.

• The developer should make any correction noted on the checklist.

• If the code is modified significantly, the class/form/module should be reviewed
again.

Source Code Documentation
• A compact html (.chm) file should be created for the code documentation. Every
class along with its public methods, public properties and public events should
have a brief documentation with examples. Use NDoc
(http://ndoc.sourceforge.net) for generating code documentation.

Source Code Checklist

Unit of work

Developer

Reviewer

Date of review

Result

Item Complies Comments

The source code complies

with naming conventions

The source code is

formatted correctly

Variables are declared

using proper scope, type,

and initialization

Considering security, all

attributes are declared with

the proper scope identifier

Resources are released

properly

Ignyte Software Version: 1.7

Coding Standards For Microsoft .NET Platform Issue Date: 6/28/2009

Ignyte Software Page 26 of 26

The source code includes

appropriate commenting

Reusable classes and

components are used

where possible

Error handling is used

where appropriate

User messages comply with

standards

GUI complies with the

presentation standard of the

project

All relevant database items

comply with standards.

Change Log

This document is originally prepared by Rob Wells for Ignyte Software Inc.

